12 research outputs found

    Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats

    Get PDF
    Feline infectious peritonitis virus (FIPV) is a major pathogen of Felidae. Despite the extensive efforts taken in the past decades, development of the "ideal" live attenuated FIPV vaccine was not successful yet. In the present study, we provide data of immunisation experiments with a recombinant FCoV pair differing only in the truncation (PBFIPV-DF-2) or completion (PBFIPV-DF-2-R3i) of their ORF3abc regions. In our previous in vivo studies, these viruses proved to show the characters of low virulent or avirulent FCoV phenotypes, respectively. Therefore, we hypothesised the ability of these viruses, as possible vaccine candidates, in conferring protection in specific pathogen free (SPF) Domestic Shorthair as well as in conventional purebred British Shorthair cats. In SPF cats, after two oronasal and two intramuscular vaccinations with two weeks intervals, both vaccine candidates provided 100% protection against lethal homologous challenge with the highly virulent FIPV DF-2 strain. In contrast, the conventional purebred British Shorthair cats did not develop protection when they were immunised with the same vaccination regimes. In these groups 100% of the PBFIPV-DF-2-R3i immunised animals developed antibody-dependent enhancement (ADE). Prolonged survival was observed in 40% of the animals, while 60% showed fulminant disease course. Genetic and more probably immunological differences between the SPF and non-SPF purebred kittens can explain the different outcome of the vaccination experiment. Our data highlight the diverse immune responses between SPF and conventional cats and suggest a decisive role of previous infection by heterologous causative agents in the outcome of the vaccination against FIP

    Recombination Events Shape the Genomic Evolution of Infectious Bronchitis Virus in Europe

    Get PDF
    Infectious bronchitis of chicken is a high morbidity and mortality viral disease affecting the poultry industry worldwide; therefore, a better understanding of this pathogen is of utmost importance. The primary aim of this study was to obtain a deeper insight into the genomic diversity of field infectious bronchitis virus (IBV) strains using phylogenetic and recombination analysis. We sequenced the genome of 20 randomly selected strains from seven European countries. After sequencing, we created a genome sequence data set that contained 36 European origin field isolates and 33 vaccine strains. When analyzing these 69 IBV genome sequences, we identified 215 recombination events highlighting that some strains had multiple recombination breaking points. Recombination hot spots were identified mostly in the regions coding for non-structural proteins, and multiple recombination hot spots were identified in the nsp2, nsp3, nsp8, and nsp12 coding regions. Recombination occurred among different IBV genotypes and involved both field and vaccine IBV strains. Ninety percent of field strains and nearly half of vaccine strains showed evidence of recombination. Despite the low number and the scattered geographical and temporal origin of whole-genome sequence data collected from European Gammacoronaviruses, this study underlines the importance of recombination as a major evolutionary mechanism of IBVs

    A complete map of potential pathogenicity markers of avian influenza virus subtype H5 predicted from 11 expressed proteins

    Get PDF
    Background: Polybasic cleavage sites of the hemagglutinin (HA) proteins are considered to be the most important determinants indicating virulence of the avian influenza viruses (AIV). However, evidence is accumulating that these sites alone are not sufficient to establish high pathogenicity. There need to exist other sites located on the HA protein outside the cleavage site or on the other proteins expressed by AIV that contribute to the pathogenicity. Results: We employed rule-based computational modeling to construct a map, with high statistical significance, of amino acid (AA) residues associated to pathogenicity in 11 proteins of the H5 type viruses. We found potential markers of pathogenicity in all of the 11 proteins expressed by the H5 type of AIV. AA mutations S-43(HA1)-D, D-83(HA1)-A in HA; S-269-D, E-41-H in NA; S-48-N, K-212-N in NS1; V-166-A in M1; G-14-E in M2; K-77-R, S-377-N in NP; and Q-48-P in PB1-F2 were identified as having a potential to shift the pathogenicity from low to high. Our results suggest that the low pathogenicity is common to most of the subtypes of the H5 AIV while the high pathogenicity is specific to each subtype. The models were developed using public data and validated on new, unseen sequences. Conclusions: Our models explicitly define a viral genetic background required for the virus to be highly pathogenic and thus confirm the hypothesis of the presence of pathogenicity markers beyond the cleavage site

    Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes

    Get PDF
    Background: The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. Results: We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). Conclusions: To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested. The present study provides a basis for further detailed studies with the aim to elucidate the molecular mechanisms providing the foundation for the adaptation process

    High prevalence of hepatitis e virus in swedish moose - A phylogenetic characterization and comparison of the virus from different regions

    Get PDF
    BackgroundHepatitis E virus (HEV) infects a range of species, including humans, pigs, wild boars and deer. Zoonotic transmission may contribute to the high HEV seroprevalence in the human population of many countries. A novel divergent HEV from moose (Alces alces) in Sweden was recently identified by partial genome sequencing. Since only one strain was found, its classification within the HEV family, prevalence in moose and zoonotic potential was unclear. We therefore investigated samples from 231 moose in seven Swedish counties for HEV, and sequenced a near complete moose HEV genome. Phylogenetic analysis to classify this virus within the family Hepeviridae and to explore potential host specific determinants was performed.Methods and FindingsThe HEV prevalence of moose was determined by PCR (marker for active infection) and serological assays (marker of past infection) of sera and 51 fecal samples from 231 Swedish moose. Markers of active and past infection were found in 67 (29%) animals, while 34 (15%) were positive for HEV RNA, 43 (19%) were seropositive for anti-HEV antibodies, and 10 (4%) had both markers. The number of young individuals positive for HEV RNA was larger than for older individuals, and the number of anti-HEV antibody positive individuals increased with age. The high throughput sequenced moose HEV genome was 35-60% identical to existing HEVs. Partial ORF1 sequences from 13 moose strains showed high similarity among them, forming a distinct monophyletic clade with a common ancestor to HEV genotype 1-6 group, which includes members known for zoonotic transmission.ConclusionsThis study demonstrates a high frequency of HEV in moose in Sweden, with markers of current and past infection demonstrated in 30% of the animals. Moose is thus an important animal reservoir of HEV. The phylogenetic relationship demonstrated that the moose HEV belonged to the genotype 1-6 group, which includes strains that also infect humans, and therefore may signify a potential for zoonotic transmission of this HEV

    Round table on infectious bovine rhinotracheitis/infectious pustular vulvovaginitis virus infection diagnosis and control.

    Full text link
    The current situation of infectious bovine rhinotracheitis/infectious pustular vulvovaginitis infection in various European countries is reviewed. Whilst some have a high serological prevalence and use live virus vaccines to control the disease, others have a low prevalence and two countries (Denmark and Switzerland) have national eradication schemes which are almost complete. Serology remains important for diagnosis although other tests such as delayed cutaneous hypersensitivity may have a role to play. New tests such as polymerase chain reaction may find increasing application where high sensitivity is required, such as the detection of virus in semen

    Latency and Reactivation of a Glycoprotein E Negative Bovine Herpesvirus Type 1 Vaccine: Influence of Virus Load and Effect of Specific Maternal Antibodies

    Full text link
    The effects of the vaccination of neonatal calves with a glycoprotein E (gE)-negative bovine herpesvirus type 1 (BHV-1) were investigated in naive and passively immunised calves either with the recommended dose or a 5-fold concentrated one. After inoculation (PI), all calves excreted the virus vaccine except three passively immunised calves inoculated with the lower titre. No antibody response could be detected in passively immunised calves, whatever the dose used, and they all became BHV-1 seronegative and remained so after dexamethasone treatment (PDT). Nevertheless, as shown by a gamma-interferon assay, all calves that excreted the vaccine PI developed a cell-mediated immune response and a booster response was observed PDT, suggesting viral reactivation. The vaccine virus was recovered PDT from nasal secretions in two calves and BHV-1 DNA were detected in trigeminal ganglia from five calves belonging to all inoculated groups. The results show that the BHV-1 gE-negative vaccine can establish latency not only in naive but also in passively immunised neonatal calves after a single intranasal inoculation. Moreover, this study shows for the first time that the gE-negative vaccine, when used in passively immunised calves, can lead to seronegative vaccine virus carriers
    corecore